Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation
نویسندگان
چکیده
The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator splitting framework enables an analytical integration of the nonlinear term that suppresses the nonlinear instability. A standard finite difference scheme weighted by piecewise dielectric constants varying across the molecular surface is employed to discretize the nonhomogeneous diffusion term of the nonlinear PB equation, and yields tridiagonal matrices in the Douglas and Douglas-Rachford type ADI schemes. The proposed time splitting ADI schemes are different from all existing pseudo-transient continuation approaches for solving the classical nonlinear PB equation in the sense that they are fully implicit. In a numerical benchmark example, the steady state solutions of the fully-implicit ADI schemes based on different initial values all converge to the time invariant analytical solution, while those of the explicit Euler and semi-implicit ADI schemes blow up when the magnitude of the initial solution is large. For the solvation analysis in applications to real biomolecules with various sizes, the time stability of the proposed ADI schemes can be maintained even using very large time increments, demonstrating the efficiency and stability of the present methods for biomolecular simulation.
منابع مشابه
Unconditionally stable time splitting methods for the electrostatic analysis of solvated biomolecules
This work introduces novel unconditionally stable operator splitting methods for solving the time dependent nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic analysis of solvated biomolecules. In a pseudo-transient continuation solution of the NPB equation, a long time integration is needed to reach the steady state. This calls for time stepping schemes that are stable and accura...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملDifferential geometry based solvation model I: Eulerian formulation
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computationa...
متن کاملFully implicit nonstationary flow simulations with a monolithic off-lattice Boltzmann approach
In this paper, the previously described monolithic approach [6] for the stationary discrete Boltzmann equation is extended to time-dependent problems. In general, both collision and advection operators are discretized on nonuniform grids as opposed to the standard Lattice Boltzmann method. Implicit time-stepping schemes are applied for an accurate and robust numerical treatment of the nonstatio...
متن کاملLong Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations
The long-time stability properties of a few multistep numerical schemes for the two-dimensional incompressible Navier–Stokes equations (formulated in vorticity-stream function) are investigated in this article. These semi-implicit numerical schemes use a combination of explicit Adams–Bashforth extrapolation for the nonlinear convection term and implicit Adams–Moulton interpolation for the visco...
متن کامل